Enhancing Binding-based User
Interfaces with Transaction Support

Nicolas Passerini

Universidad Nacional de Quilmes
Universidad Nacional de San Martin
Universidad Tecnoldgica Nacional

npasserini@gmail.com

Pablo Tesone

Universidad Nacional del Oeste
Universidad Nacional de Quilmes
Universidad Nacional de San Martin

tesonep@gmail.com

Categories and Subject Descriptors D-2.2 [Design Tools and
Techniques]: User interfaces; D-2.3 [Coding Tools and Tech-
niques]: Object-oriented programming

Keywords MVC, MVVM, MVB, Transactions, User Interface,
Aspect Oriented Programming, AOP, Observers, Patterns

Abstract

In the construction of object-oriented user interfaces, a significant
amount of time is usually spent in a few rutinary tasks related to
the transference of data between domain objects and user interface
components. Multiple repetitions of these simple tasks are a com-
mon source of programming errors. Binding-based MVC architec-
tures, such as Direct Manipulation, MVVM and MVB, reduce these
tasks but introduce some non-trivial issues like cancelling the cur-
rent operation and rolling back changes. This work proposes an
aspect-oriented solution to these problems combining well-known
aspect-oriented techniques, such as observable objects and software
transactions, to provide a simple and transparent MVC implemen-
tation. Our solution focuses on providing warranties of aromicity,
consistency and isolation of objects environments and it demon-
strated to be useful in a big range of applications.

1. Introduction

An usual pattern in the development of an interactive software ap-
plication is to separate the user interface (Ul) from the domain
logic [3]. In this way an interactive application contains specific
components for handling the UI, separated from those which han-
dle domain logic, with the objective of improving the flexibility and
maintainability of the system.

Since the objective of the Ul is to allow the user to interact with
the domain logic [5] a new problem arises from this separation,
which is the transfer of information between the UI and the domain
model. A big amount of the information entered by the user in
the Ul is stored in the domain model, after some validation and
transformation. Also, most of the information shown in the UI
comes from the domain model. It is not uncommon to see industrial
projects which handle this information transfer manually, or Ul
frameworks which do not provide a simple way to avoid multiple
repetitions of the transformation and validation logic. Although

Javier Fernandes

Universidad Nacional de Quilmes
Universidad Nacional de San Martin
Universidad Nacional del Oeste

javier.fernandes@gmail.com

Ronny De Jesus

Universidad Nacional de Quilmes
nnydejesus@gmail.com

Leonardo Gassman

Universidad Nacional de Quilmes
Igassman@gmail.com

these tasks are often not too complex, repeating the same logic
multiple times is considered a code smell [13] because it represents
a possible source of inconsistency. Also, multiple repetitions of the
same logic undermines the desired flexibility.

In an MVC architecture [35] the task of communicating the
components of the UI (i.e. the view) and the components which
implement the domain logic (i.e. the model) is handled by a third
kind of component, named controller.

Among the model-view-controller triad, the controller is the
component with more diverging shapes in the different interpre-
tations of the MVC pattern [16, 24, 27, 32-34, 37, 39]. Some of
these strategies have achieved a step forward in reducing the work
needed for handling the transfer of information between view and
model, by using small, fine grained, reusable controllers to build a
binding between any property from the domain model to an input
field in the UI (c.f. Sect. 2.1). However, simple binding strategies
change the model while the user is entering data, providing no way
to handle the cancellation of the current operation and rolling back
changes in case of failure.

We propose a solution to these problems based on aspect-
oriented programming [22], which uses two aspects to intercept
modifications to the desired domain objects. In the first place, the
Observable Aspect has the responsibility of producing events each
time a domain object is modified. These events are consumed by
the data-binding mechanism of a MVB [27] framework in order to
keep view and model synchronized with each other. On the other
hand, the Transactional Aspect implements an STM solution [38].
Therefore, it records all changes made to domain objects and, in
case of an error or cancellation, provides an automatic mechanism
to restore the domain objects to their state at the beginning of the
cancelled operation.

Our main contribution is a new way of integrating these two
aspects to build an MVC implementation, which both reduces the
boilerplate code [26] needed and provides some tools to warranty
the principles of atomicity, consistency and isolation at the object
level'! [36]. We will also describe the details of the framework

I The fourth characteristic of a transactional context, durability, is not im-
portant for this work.

we built to support this approach and our experience developing
applications in this way.

This work is organized as follows. Sect. 2 describes the problem
we are trying to solve and shows the motivation to our approach.
Sect. 3 depicts the main objectives of this work and how we propose
to solve the problems we describe before, while Sect. 4 delineates a
sample implementation of these ideas. Sect. 5 shows a example ap-
plication. Sect. 6 discusses our approach, analysing some possible
variants and 7 compares it to other ideas with similar objectives.
Finally, Sect. 8 shows our conclusions and the next steps of our
research.

2. Motivation

This section describes the problem we are trying to solve, how it
is usually tackled in industrial developments and the drawbacks we
have found in those solutions, which in turn motivate us to look for
a new approach.

We illustrate the different approaches with an example which
manages bank transfers. The system allows the user to select two
accounts, enter an amount and transfer it. Fig. 1 shows transfer
dialog. The transfer process implies two steps: first we withdraw
money from one account, and then we deposit the same amount of
money into the other one. Fig. 2 shows the Transfer and Account
classes.

Create ktransaction

Source | Owner: Bruce Id: 569 |

Destination | Owner: Phil Id: 66 =2

Source Destination

Owner |Phil
Amount (243 Amount | 1,169

Accept || Cancel

Figure 1. Single Transference Screen

Amount

Owner |Bruce

The domain model is responsible for validating that only valid
transfers are executed. If an invalid transfer is attempted, it is re-
jected by throwing an InvalidAmountException. Since the excep-
tion thrown is a subclass of UserException we expect that de UI
catches it and informs the situation to the user. Still, the domain
model (i.e. the Transfer class) is responsible for keeping itself con-
sistent. It is worth noticing that the code in Fig. 2 would handle
correctly any exception thrown by the withdraw method, because
the deposit would not be executed.

2.1 Constructing Applications Using the MVC Pattern

One of the main objectives of the MVC pattern is to de-couple the
view from the domain model. To achieve this, the controller medi-
ates [15] between view and model. When the user inputs informa-
tion to the application through the view, the controller is responsi-
ble for updating the model with this new information. Previously,
the controller validates the new information and transforms it ac-
cording to the needs of the model. Similar transformations need
to be done in order to show the user the information coming from
the domain model. The logic of these validations and transforma-
tions is often fairly simple. The main problem is that these rules
have to be enforced in every user interaction, i.e. every piece of

class Account {
private var balance

def withdraw(amount) = {
if (balance < amount)
throw new InsufficientFundsException
balance -= amount

}

def deposit(amount) =
balance += amount

}

class Transfer {
private var source
private var destination

private var _amount
def amount = _amount
def amount_=(newAmount) = {
if (newAmount < 0)
throw new InvalidAmountException
else
_amount = newAmount

}

def execute {
source.withdraw(this.amount)
destination.deposit(this.amount)
}
}

class InvalidAmountException extends UserException
class InsufficientFundsException extends UserException

Figure 2. Fragments of the domain model

information entered by the user has to be validated and possibly
transformed. Without an high level tool to describe the validation
and transformation logic, we could end up producing large amount
of repetitive, error prone and hard to maintain boilerplate code.

Since Reenskaug first proposed the model view controller pat-
tern in 1979 [35], his idea seems to be into a de facto standard in the
software industry. However, there has been a large quantity of di-
verging interpretations of this pattern: almost every UI framework
claims to be an MVC framework, yet having big differences among
them. The different interpretations of the MVC pattern can be di-
vided in two large groups, depending on the shape of the controller.

In the first group, we consider MVC interpretations which
choose to use big, coarse grained controllers which act as a fa-
cade [15] to the domain logic. This is the most simple version of
the MVC, and the controller has the responsibility of coordinating
the whole application flow, it receives requests from the view, ex-
tracts the data contained in each request, validates and transforms
the data, decides which action to execute, invokes the necessary do-
main logic (in some cases it even executes some domain logic by
itself), interprets the results of the domain operation and chooses
the next view to show to the user. In many cases, the consequence
of trying to de-couple view and model using this strategy is to cre-
ate a third participant (the controller) that is coupled to both of
them. In such situations, the controller becomes a complex and er-
ror prone component, and is the main cause of the UI consuming
more development effort than any other part of the system [28].

In the second group, we consider event-based MVC interpre-
tations. The Observer Pattern [15] is a typical approach to han-
dle event-driven programming in object-oriented systems. The Ob-

server Pattern defines two main actors: a source or observable sub-
ject that produces the events; and an observer or /istener which reg-
isters itself to be notified when a specific type of event occurs. A
typical implementation uses an intermediary named event handler,
which keeps a global registry of the listeners and is responsible for
receiving all events and dispatching them to the corresponding lis-
teners.

In this case, instead of a big controller coordinating application
flow, we have multiple small, fine grained controllers which listen
to the events produced by both view and model. There is no need
for a global coordination of the application flow, which is instead
guided by the events which are produced by the view on each user
action. Besides, any change in a domain object can be modelled as
an event, which a controller can listen to and therefore update the
view accordingly [11]. The rest of this work focuses on this kind of
user interfaces.

Events allow a very low-coupled communication between the
source and the listeners, since the source only has to fire the events
without needing to know which components are going to handle
them (or even if they are going to be handled). Consequently,
events conform a very useful mechanism for implementing the
MVC pattern.

2.2 Bindings and Properties

An event-driven implementation of MVC allows the usage of bind-
ings between view and model. A binding is a declaration that estab-
lishes a connection between two properties®. A binding manager
keeps a registry of these declarations and ensures that the values of
bound properties remain synchronized with each other. In order to
be able to bind properties, they have to fire events when its value
changes. The event will reach the binding manager, which updates
all bound properties according to the change.

A property is a named characteristic of an object that has a value
which is exhibited through its public interface. In some cases, the
value of the property can also be updated through the public in-
terface of the object. It should not be confused with an instance
variable, which is an implementation issue. Instead, a property is a
feature that an object exhibits in order to let other objects interact
with it. Also, properties are allowed to have some associated be-
havior, for example when an update of the value is requested the
object can validate the new value and veto the change, or register it
in a change log. Moreover, properties can be calculated; normally
clients may not know if the property they are using is calculated or
not. Some languages, such as C# [19] or Scala [30] provide spe-
cific constructs to define properties. In older languages they are im-
plemented as methods that follow a name convention. For example
the Java language defines a standard, named JavaBeans [12], which
specifies that a property named height should be implemented us-
ing the methods getHeight and (optionally) setHeight. These con-
ventions allow that frameworks identify properties automatically.

Bindings can also be configured to perform transformations and
validations. Transformations are necessary when the two properties
are not of the same type, for example a String-valued property can
be bound to a Number-valued property, provided that the binding
manager can convert the values when needed. The binding manager
has to provide a mechanism to handle failures, which can occurr on
transformation, validation or as a veto from the property itself.

In UI construction bindings can be used to synchronize a prop-
erty from a domain model object. with a Ul component that shows
a value or allows the user to enter a value (such as a TextBox or a
ComboBox). Different authors have proposed binding-based MVC

2 Binding and property are terms that can have different meanings in other
contexts, here we use them with their classic interpretation in UI construc-
tion.

architectures, such as Direct Manipulation [32], MVVM [16, 39]
and MVB [27] These MVC implementations have achieved a big
step improvement in reducing the boilerplate code in controller ob-
jects, and therefore the portion development effort which has to
invested in the user interface.

Binding-based frameworks provide a strategy to structure the
controller code. Each kind of validation is defined in a small,
reusable object called a validator. All validators implement the
same interface, so they are polymorphically interchangeable. The
same idea is applied to create small, reusable polymorphic trans-
formers. The binding-mechanism puts all these objects together.
Frequently it provides a declarative way to define a binding be-
tween two properties, and at the same time associate it with the
needed validators and transformers. In many cases, these frame-
works can even infer which transformed is required using reflection
techniques. In this way, binding provides a very high-level strategy
to transfer information between view and model.

Fig. 3 shows a simplified version of the code needed to define a
binding-based view for the TransferDialog. The exaple is coded
using a UI framework named Arena’. The Arena framework is
based on SWT [29] and JFace [18], which in turn use JavaBean
events [25] in order to update the visual components when the
underlying domain objects change.

Both ComboBoxes and TextBoxes define bindValue methods,
which bind the main value of the components to the property
referred by the received block expression [30]. Also, ComboBoxes
allow us to bind the list of possible options, through the bindItems
method.

class TransferDialog extends Dialog {
val model = new TransferViewModel

def createContents(mainPanel) {

new ComboBox
.bindItems { model.possibleOrigins }
.bindValue { model.transfer.source }

new ComboBox
.bindItems { model.possibleDestinations }
.bindValue { model.transfer.destination }

new TextBox
.bindValue { model.transfer.amount }

new Button
.caption = "Accept"
.onClick { model.transfer.execute }
}
}

class TransferViewModel {
val transfer = new Transfer
def possibleOrigins: List[Account] = ...
def possibleDestinations: List[Account] = ...

}

Figure 3. Simplified code of the TransferDialog class. Layout
information has been removed.

Binding UI components to domain objects allows domain ob-
jects themselves to validate the operation in course, for example
if the transfer amount is negative or if the account has not enough

3 Arena is an educational UT framework developed by teachers of the uni-
versities of Quilmes (UNQ, Argentina), Tecnolégica (UTN, Argentina) and
San Martin (UNSAM, Argentina). It has been used to teach topics about UI
construction since 2010. More details about the UTI framework can be found
in https://sites.google.com/site/programacionui/material/
herramientas/arena (in Spanish)

https://sites.google.com/site/programacionui/material/herramientas/arena
https://sites.google.com/site/programacionui/material/herramientas/arena

money to do the transfer. This simplifies the process of ensuring
that those rules are fullfilled after every operation, and also it avoids
the repetition of such validations in the UI code, which would be a
possible source of errors and inconsistencies.

2.3 Firing Events from the Domain Model

We will focus on bidirectional bindings, i.e. in which any of the
two properties can fire events that update the other one. This allows
that Ul to automatically show a change in the underlying domain
object. For example if we are showing an Invoice to the user and
allow him to add a new Item, it is a OOP best practice to have
the Invoice object calculate its new total by itself. A bidirectional
binding will allow us to show this total in the screen by modelling
it as a calculated property and binding any kind of read-only UI
component to it. This strategy avoids the need to calculate the total
in the UL, which would represent a duplication of the logic already
contained in the Invoice object.

To allow a bidirectional binding between view and model, it
is necessary for both ends of the binding to be able to fire events
when they change. This is not a problem for the Ul end, given
that there are many Ul component libraries that fire events on
different user actions. However, firing events from the domain
model poses a problem, since we do not normally want to pollute
our domain model with event-firing code. Therefore, there are few
UI frameworks that support this kind of bindings, and it is difficult
to implement this feature for web applications. To make our domain
objects fire events, we need to detect each code segment in which
the value of a property can be changed, and add some code to notify
the event handler about the new event.

Fig. 4 shows the changes to be made to the Account and
Transfer classes in order to have them fire a event every time
one of their properties changes. Similar changes could be needed
for the TransferViewModel class. This reduces the cohesion of our
domain classes, because we are adding code to handle another con-
cern different to their main purpose. Also, we have to ensure that an
event is fired each time a property is changed; a manual approach
to this is always subject to human errors.

Multiple UI frameworks solve this problem by having only
view-to-model bindings, i.e. when the view changes the model is
updated automatically by the binding framework, but not the other
way around. On the other side, bidirectional bindings allow to
automatically update the screen when the model changes. This is
not only useful in contexts where a model can be modified from
different sources, but also when calculated properties of a model are
shown in the screen, because the calculated properties can change
as result of an action performed by the same user. This, in turn,
favors the usage of the logic contained in the domain model, instead
of repeating part of it in the view itself.

If we are using view-to-model bindings, we already constructed
a way to update models from view events performing validations
and transformations. Being able to throw events also from the do-
main model would allow to reuse the same binding definitions,
validation and transformations to implement model-to-view com-
munication. Therefore, a mechanism that automatically fires events
when the domain is modified would be of big help by eliminating
much of the manual work in UI construction.

2.4 Consequences of Binding

A binding-based MVC implementation provides a useful strategy
to manage the data collected by the Ul, transformating and validat-
ing it, and transferring the results to the domain model. Strategies
which impose intermediate structures to transfer data between Ul
and domain model usually require more bureaucratic code.
Moreover, binding encourages the programmer to empower do-
main objects and exploitation the logic contained in it. Even when a

class ObservableModel {
val pcs = new PropertyChangeSupport(this)
}

class Account extends ObservableModel {

private var _balance

def balance = _balance

def balance_=(newBalance) = {
val old = balance
balance = newBalance
pcs.firePropertyChange("balance", old, _balance)

}

)

class Transfer extends ObservableModel {
def amount_=(newAmount) = {

if (newAmount < 0)
throw new InvalidAmountException

else
val old = _amount
_amount = newAmount
pcs.firePropertyChange("amount", old, _amount)

Figure 4. Modifications to the Account and Transfer classes (only
the changed methods are shown).

domain rule affects navigation, the Ul code should not contain do-
main logic. Questions like “should this action be allowed?”, “is this
property mandatory?”, “which values are valid for this property?”
should be answered by the domain model. The only responsibility
of the Ul is to communicate the rules to the user, not to decide if
arule is being accomplished. Binding encourages this division, for
example by allowing a domain object to validate itself while it is
being edited. Besides, the possibility of automatically updating the
UI when a domain object changes, allows to take advantage of the
logic contained in the domain. Opposite to that, strategies with in-
termediate data transfer structures (usually named DTOs, i.e. Data
Transfer Objects [14]), produce anemic domain models [8], among
other code smells [13].

On the downside, a straightforward implementation of binding
would modify domain objects while they are being edited. This can
be undesired in many contexts, for example when the edition can
still be cancelled by a user action, rejected by a program validation
or because other users could be seeing the changes before they are
confirmed. Several techniques have been created to overcome this
problem, but all of them have their drawbacks.

In DTO-based techniques, intermediate data structures are used
to hold the data that has to be transferred between view and model.
In this approach, the DTO can be bound to the view and store the
data while it is edited. Also, after confirmation of the operation
another set of bindings could be used to automatically transfer the
data to the domain model. The main problem is that DTO-based
techniques inhibit the exploit of domain logic from the Ul, i.e.
the logic in domain objects can only be used after the operation
is confirmed; if we wanted to use some of these logic in the view
to aid the user, it probably had to be repeated outside the domain
model.

Another common technique is to copy the domain objects before
edition, i.e. before starting the edition domain objects are copied

and after the edition either the original domain object is replaced
by the copy, or the original object’s internal state is replaced by the
copy’s internal state. Contrasted to DTOs based techniques, this
one has the advantage of allowing the exploit of domain object
behavior for the UI. Nevertheless, none of these processes is easy
when we have objects with complex internal states or a graph of
related objects to be edited. If we have to edit a set of related
objects, we will need to know exactly which objects to copy, and
replicate that part of the object graph.

To illustrate this problem we extend our transfer example to
have a unique dialog that allows to perform multiple transfers atom-
ically. Fig. 5 shows this new dialog. To implement the logic be-
hind this dialog we would like to update the balance of the user
accounts each time he adds a new transfer. In this way we are
able to reuse the validations implemented in the Transfer and Ac-
count classes. Also we require to be able to cancel all the selected
transactions together. Fig. 6 shows a base implementation of the
MultipleTransfersDialog class and its view model, which does
not address these problems. Neither DTO-based nor copy-based
techniques can provide an adequate solution to this example.

% Make multiple transfers

Source | Owner: Bruce Id: 569 3 |

Destination | Owner: Phil Id: 66 .

Source Destination

Owner |Bruce Owner |Phil
Amount (243 Amount | 1,169

Accept || Cancel

Figure 5. Multiple Transfer Dialog

Amount

A variant to this is to copy on demand, i.e. use aspect-oriented
programming to intercept object modification and create a copy be-
fore allowing it. This approach would require a machinery similar
to the ideas described in this work. In either case, replacing an ob-
ject requires knowing all the references to it, which is not a com-
mon feature in many languages.

2.5 Transactions

Nowadays many applications have the need to implement a trans-
actional behaviour. The applications have to perform their use cases
as transactions, enforcing the concepts of ACID [17] .

A common strategy is to rely on the use of database transac-
tions, because many database management systems implement this
feature. In this approach the application performs all the changes
to the model and the persistent engine is the responsible party for
tracking all the changes to the database inside the transaction and
perform the commit or the rollback of the operation. Every use case
is performed inside a Database Transaction, so in every use case
the transaction has to be opened and after its execution it has to be
commited or aborted. This way of working is very simple because
the domain model does not know anything about the handling of
the transaction, only it has to clearly establish when the transac-
tion starts and when the transaction ends. This information can be
performed in a declarative way so the programmer does not need
to implement it by hand, as in architectures based on Enterprise
JavaBeans [40].

This approach has a major drawback: all the objects in a failed
transaction have to be discarded, because the changes are rolled

class MultipleTransfersViewModel {
val transfers = List[Transfer]
val currentTransfer = new Transfer
def possibleOrigins: List[Account] = ...
def possibleDestinations: List[Account] = ...

def addTransfer = {
currentTransfer.execute
currentTransfer = new Transfer

}

def confirm = ...
def cancel = ...

}

class MultipleTransfersDialog extends Dialog {
val model = new MultipleTransfersViewModel

def createContents(mainPanel) {
new ComboBox
.bindItems { model.possibleOrigins }
.bindValue { model.currentTransfer.source }
new ComboBox
.bindItems { model.possibleDestinations }
.bindValue { model.currentTransfer.destination }
new TextBox
.bindValue { model.currentTransfer.amount }

new Button

.caption = "New"

.onClick { model.addTransfer }
new Button

.caption = "Accept"

.onClick { model.confirm }
new Button

.caption = "Cancel"

.onClick { model.cancel }

Figure 6. Base implementation of the MultipleTransfersDialog

back in the database but not in the domain objects. This problem
can even get worse if the application has a rich interface in which
domain objects are bound to UI components. Another problem this
solution presents, is the time and the resources the database needs
to handle the transaction. Many times failed use cases would not
even have the necessity of reaching the database, but they reach it
only to exploit its transaction support.

Other possible implementations, such as memory transactions,
do not provide a clear integration with the rest of the application ar-
chitecture and therefore keep most of the problems of the database
solution. The integration between the Ul and the transactional be-
haviour is not well solved by any of the solutions stated above.
They demand the programmer to perform the integration by hand
and numerous tasks need to be done before the desired integration
can be achieved, generating error prone and repetitive code.

3. Proposed Solution

The main objective of this work is to enhance MVVM / MVB ar-
chitectures by combining it with a transparent object-level transac-
tion mechanism. To achieve this objective, we require two aspect-
oriented tools, namely the Observable Aspect and the Transactional
Aspect. These are two well-known uses of aspect-oriented pro-
gramming, which have been implemented in many different tech-
nologies. The following two sections respectively describe the re-
quirements we pose on each of these tools. Afterwards, Sect. 3.3

describes the key part of our approach, which is the integration of
both aspects into a UI framework.

3.1 Observable Aspect

The observable aspect has the responsibility for firing events each
time an object is modified. The objects which changes are mon-
itored by the observable aspect are known as observable objects.
Combined with a MVB framework, the observable aspect helps
keeping the model and the view synchronized.

The observable aspect associates a set of Listeners [15] to each
property of each observable object. These associations are kept in a
global listener registry. The listeners forward the received events
to the binding mechanism of the MVB framework, allowing to
bind the value of the listened property to a Ul component. In other
implementations of MVB, the programmer has the responsibility
of manually notifying the binding mechanism about the changes in
the properties of domain objects. The purpose of implementing an
observable aspect is to release the programmer from the need to
write this boilerplate code.

To achieve its objective, the observable aspect has to intercept in
a transparent way all changes to the internal state of an observable
object and generate the corresponding events. By this means the
integration between the model and the view is achieved without
imposing modifications to the the domain model code.

3.2 Transactional Aspect

The transactional aspect allows to control the modifications to
the internal state of domain objects and their visibility. An object
whose internal state is controlled by the transactional aspect is
named a transactional object.

We also define a transactional context, which is a conceptual
unit of work [14]. Every access to a transactional object has to
be associated to a transational context. The transactional aspect
intercept all accesses to a property of any transactional object and
gives control to the transactional context. In this way, we are able to
(a) take notice of the modifications done in a transactional context,
in order to roll them back if needed, and (b) isolate the transactional
contexts, i.e. operations in a transactional context are unable to see
the modifications done concurrently in other transactional context.

There are three operations that manipulate the transactional con-
text itself: beginTransaction, commit and rollback. The beginTrans-
action operation creates a new transactional context. The commit
operation confirms the modifications done in the context and pub-
lishes them, so that they are visible to other contexts. The rollback
operation automatically discards all modifications. As expected,
both commit and rollback finish the current transactional context.

The transactional context allows multiple operations in the same
application to manipulate the same object concurrently with a read
commited isolation level.

Our approach also requires nested transactional contexts, i.e.
we can start a new transactional context inside an existing one. We
say that the first transactional context is the parent context of the
second one. This allows the division of a transaction into separated
parts that can be commited or rolled back individually. When a
child transaction is commited, the modifications done in the context
of that transaction are published to its parent context but remain
invisible to other, unrelated contexts.

3.3 Integrating both aspects together and with the UI

Using both aspects together raises subtle issues that have to be
addressed properly. It is also necesary to study how the aspects
will interact with the Ul components. Our strategy to solve this
problems is defined by the following three actions.

First, every time that the UI starts an operation that might
later be cancelled by the user, we associate the execution of that

operation with a transactional context. In our solution, we achieve
this by adding specific Ul components that interleave the operations
of beginTransaction, commit and rollback with the code specific to
the operation requested by the user.

Second, we associate bindings and events to their correspond-
ing transactional contexts. When a binding between the view and
the model is established, the model observer holds a link to the
transactional context associated to the view. Then, when an event is
fired by the observable aspect, it is associated to the current trans-
actional context. These transaction-aware bindings will ignore any
event coming from a different transactional context other than its
own.

Finally, we need to pay attention to the commit process. When a
transaction is commited all the changes made during the transaction
are copied to the parent context. For each of these changes, an
event has been fired, but these events were confined to the child
transactional context. If there are views associated to the parent
context, they have missed the events in the child context. When we
propagate a change from a context to another, we have to fire the
event again, in the new context. So, in the commit process, besides
propagating the changes from the child context to the parent one,
we have to reproduce their corresponding events.

4. Sample Implementation

The framework is implemented in a mix between Java and Scala
[31] and can be used for applications written in either both lan-
guages. We assume that it can be used in applications programmed
in any JVM language if it complies with the JavaBeans convention
[12]; we have tested our assumption succesfully with XTend [9]
and Groovy [2].

We decided to implement our own versions of the observable
and transactional aspects, in order to simplify integrating them to-
gether. These tools are named Pure Observable Objects (POO) and
Pure Object Transactions (POT), which respectively implement the
ideas depicted in Sect(s). 3.1 and 3.2. Aspect-Oriented Program-
ming is achieved in a self-developed lightweight AOP-framework
called Aspects for Pure Objects (APO).

It is not the objective of this paper to provide a full description
of the implementation of these tools, since they are well-known
examples of AOP applications. Still, an overview is needed in order
to fully understand the subtleties of the integration (c.f. Sect(s). 4.1
and 4.2 respectively). Afterwards, Sect. 4.3 describes the central
part of the implementation, i.e. how we integrate all these tools
together. For a detailed discussion about the selection of the AOP
framework see Sect. 6.

All our tools are released under the terms of the MIT License
and available at http://xp-dev.com/svn/ugbar/projects. A
full description of the implementation can be found in [7].

4.1 Observable Aspect Implementation

The observable aspect uses the APO framework to produce an event
each time a domain object is modified. More specifically, the aspect
affects the classes which have the Observable Java Annotation. To
achieve this, each field write is intercepted, i.e. every expression of
the form this.<fieldName>= <expr> is transformed by the weav-
ing process in order to notify the EventManager. Fig. 7 shows the
code template used to transform field writes.

The EventManager coordinates the event handling mechanism.
It keeps the registry of the listeners for each field of each observable
object, and has the responsibility of creating the event objects
and dispatching them to the interested listeners. Fig. 8 shows a
simplified version of the EventManager class.

The method EventManager.default provides access to the
unique instance of this class. The implementation allows to change

http://xp-dev.com/svn/uqbar/projects

val oldValue = this.<fieldName>
this.<fieldName> = <expr>
EventManager.default.valueChanged(
this, "<fieldName>",
oldValue, this.<fieldName>)

Figure 7. Code template used by the observable aspect to trans-
form field writes in observable objects

object EventManager {
var default = new EventManager

}

class EventManager {
var listeners =
new HashMap[(Object, String), Set[Listener]]

def listenersFor(obj, fldName) =
listeners.getOrElseUpdate((obj, fldName),
Set())

def addListener(obj, fldName, listener) =
listenersFor(obj, fldName).add(listener)

def valueChanged(obj, fldName, oldval, newval) =
if (oldval != newval) {
val event = createEvent(...)
for (1 <- this.listenersFor(obj, fldName)) {
1.valueChanged(event)
}
}

def createEvent = ValueChangeEvent

Figure 8. EventManager code (simplified)

the event manager in order to provide a customized implemen-
tation. This feature will be used in order to integrate it with the
transactional aspect (c.f. Sect. 4.3).

The code inserted by the observable aspect sends the valueChanged

message to the event manager, indicating the modified object, the
name of the modified field and the old and new values of the field.
The valueChanged method creates an event and notifies all the reg-
istered listeners. In order to be notified when a property of an object
changes, the interested component has to implement the Listener
interface and register itself through the addListener method.

4.2 Transactional Aspect Implementation

The transactional aspect also uses the APO framework to intercept
accesses to the internal state of objects. It affects the objects marked
with the Transactional Java Annotation. In this case, both field
reads and field writes are intercepted, allowing the intervention of
the TransactionalContext. Field writes (i.e. expressions of the form
this.<fieldName>= <expr>) are replaced by using the following
template:

ctx.fieldWrite(this, "<fieldName>", <expr>)

ctx is a method injected by the aspect to transactional objects,
which retrieves the current TransactionalContext:

def ctx = TransactionalContext.current

Also, field reads are transformed, i.e. this.<fieldName> is trans-
lated to:

ctx.fieldRead(this, "<fieldName>")

Fig 9 shows the code of the TransactionalContext class and its
TransactionalContext companion object*. The transactional con-
text object keeps a record of the changes done during the transac-
tion. Its fieldWrite method registers the new value of the field in
this record. When the fieldRead method is invoked, it first looks
for the value in the record and if its not found it delegates to the
parent context.

The parent chain always ends in a NullContext. We achieve this
by associating an instance of this class to each new thread; when a
transaction is created in the thread, it will have the NullContext as
parent. The fieldWrite and fieldRead methods of the null context
access the transactional object’s fields by reflection. This provides
the same behavior as if we had no transactional aspect.

Unlike the EventManager, there are multiple instances of the
TransactionalContext class. To have a global point of access to
the current transactional context, we associate it to the executing
thread, using a ThreadLocal object, which is provided by the Java
platform. The expresssion TransactionalContext.current gives
access to the transactional context associated to the current thread.
The companion object also provides global methods for handling
transactional contexts. The beginTransaction method simply cre-
ates a new context and stores it as the current context. The commit
and rollback methods remove the current context and restore its
parent as current context. The commit operation delegates in the
context itself to propagate its changes to its parent. On the other
hand, the rollback operation simply discards the transactional con-
text and all the changes contained in it.

4.3 Integration

This section provides the implementation details for the strategy
defined in Sect. 3.3. First we cover the integration of each aspect
into the UI framework; then we describe the problems which arise
when using both aspects at the same time, and the solutions we
have found for these problems.

The integration with the observable aspect is fairly simple, we
only have to provide a Listener implementation that listens to
POO events and adapts them to the needs of the Ul framework.
By implementing similar connectors we can integrate the POO tool
with other UI frameworks.

The integration with the transactional aspect leads to more in-
teresting problems, since we have to decide how to delimitate trans-
actions. We decided to create a new subclass of Arena Dialog,
creating a TransactionalDialog, which automatically handles the
transactional context. In other UI frameworks with more primitive
UI components, transactional contexts might have to be handled
manually (c.f. Sect. 6). Fig. 10 shows a simplified version of the
TransactionalDialog class.

When a transactional dialog is opened, it creates a new trans-
actional context. Since Arena Dialogs already have Accept and
Cancel buttons, we only need to have them invoke the respective
POT actions (commit and rollback). The default accept method
method of a Dialog also invokes the domain action associated to
the dialog, so it is a good place to catch domain exception and
rollback the transaction. We defined a special type of exception
(UserException), which the domain code shall use to notify prob-
lems that have to be informed to the end user.

4 Companion Objects are the way to have class methods in Scala [30].

class TransactionalContext(parent) {
var values = new Map[(Object, Field), Object]

def fieldRead(obj, fldName) =
values(obj, fldName) match {
case Some[value]l => value
case None => parent.fieldRead(obj, fldName)
}

def fieldWrite(obj, fldName, value) =
values(obj, fldName) = value

def commit =
for (((obj, fldName), value) <- values)
publish(obj, fldName, value)

def publish(obj, fldName, value) =
parent.fieldWrite(obj, fldName, value)
}

class NullContext {
def fieldRead(obj, fldName) =
obj.getClass.getField(f1dName) .getValue(obj)

def fieldWrite(obj, fldName, value) =
obj.getClass.getField(f1dName)
.setValue(obj, value)

}

object TransactionalContext {
val _current = new ThreadLocal

def current = {
if (_current.get == null)
_current.set(new NullContext)
_current.get

}

def current_=(newContext) =
_current.set (newContext)

def beginTransaction =
current = new TransactionalContext(current)

def commit = {
val tx = current
current = current.parent
tx.commit

}

def rollback =
current = current.parent

Figure 9. TransactionalContext class, simplified

As explained in Sect. 3.3, integrating both aspects together
requires that we restrict the events produced by POO, so that they
only reach the listeners in the same transactional context. This is
done by extending the event manager of Arena and by adding a
filter that discards the events from other contexts. Fig. 11 show a
simplified version of the TransactionalEventManager class.

The new event manager introduces two modifications to the
original one. First, we change the type of events that we fire;
these new transactional events keep track of the transactional con-
text in which they have been produced. Then, the addListener
method is overridden in order to decorate [15] each listener with a
Transactionalistener. The transactional listener also keeps track
of the transactional context in which it was created. When the lis-

class TransactionalDialog extends Dialog {
override def open = {
TransactionManager.beginTransaction
super.open

override def accept = {
try {
super.accept
TransactionManager.commit
} catch {
case e: UserException =>
TransactionManager.rollback
this.display(e)
case e: Exception =>
TransactionManager.rollback
throw e
}
X

override def cancel = {
TransactionManager.rollback
super.cancel
X
}

Figure 10. TransactionalDialog class (simplified)

class TransactionalEventManager {
extends EventManager {

def createEvent = TransactionalValueChangeEvent

def addListener(obj, fldName, listener) =
super.addListener(obj, fldName,
new Transactionalistener(listener))

}

class Transactionalistener(delegate: Listener) {
extends Listener {

val ctx = TransactionalContext.current
def valueChanged(evt) =

if (this.ctx == evt.ctx)
delegate.valueChanged(evt)

Figure 11. TransactionalEventManager code (simplified)

tener receives an event, we compare the context of the event with
the context of the listener and only if they both share the same
context we propagate the event to the decorated listener. All other
events are just ignored as they occurred outside the transactional
context of the listener’.

Last, we need to pay attention to the commit process accord-
ing to the ideas described in Sec. 3.3. To do so, we extend the
TransactionalContext object in order to take care of the events
produced during the transaction. This is achieved by overriding the
method publish on the transactional context, as shown in Fig. 12.
The pattern used to notify the EventManager is very similar to that
one used in the field writes of observable objects (c.f. Fig. 7).

5 There could be other strategies to select the events, but a comprehensive
comparison of these strategies goes beyond the objectives of this work.

class ObservableTransactionalContext {
override def publish(obj, fldName, value) =
val oldValue = parent.readField(obj, fldName)
super.publish(obj, fldName, value)
EventManager.default.valueChanged(
obj, fldName, oldValue, value)

Figure 12. Extensions to the TransactionalContext

It is important to notice that the commit operation first changes
the transactional context and then asks the old context to commit
its changes (c.f Fig. 9). In this way, the publish method is invoked
in the new context (parent of the old one) and therefore the events
will be taken into account by the listeners of this new context.

Another important remark is that the observable aspect has to be
weaved before the transactional aspect because it introduces a field
read (c.f. Fig. 7). If we would apply the aspects in the wrong order,
this field read would not be affected by the transactional aspect,
leading to an unexpected behavior.

5. Example Application

Using our approach simplifies both the domain logic and the UL
The Transfer and TransferViewModel classes remain unchanged
from the original version, except for the annotations added (c.f.
Fig. 13). Since these objects are transactional, we are free to modify
them, because changes will not be visible outside the transaction;
also, in case of an error, the changes will be automatically rolled
back. In case of an error, the framework will trap it and rollback
the transaction, leaving all of the domain objects in their original
state.

@0bservable @Transactional
class Transfer { ... }

@0bservable Q@Transactional
class TransferViewModel { ... }

Figure 13. Code fragment of the Transfer class

To take advantage of the integrated transactional mechanism,
we should have our dialog extend the TransactionalDialog class,
as shown in Fig. 14. The acceptAction method is a hook provided
by the TransactionalDialog class to define the domain code to be
invoked when the Accept button is pressed.

class TransferDialog extends TransactionalDialog {
def acceptAction = model.transfer.execute

Figure 14. Modifications to the TransferDialog class.

6. Discussion

One important goal of our approach is to minimize impact in the
application code. Regarding this objective, the two most visible
points of impact of our approach in the rest of the system are trans-
action delimitation and the selection of observable and/or trans-
actional objects. We consider that the responsibility of a transac-
tional framework is to implement transactional behaviour, but it is

not possible to decide when a transaction starts or ends. Therefore,
transactions has to be delimited either by the application code itself
or by other architectural components. In our sample applications,
transactions have been delimited by the components that integrate
our aspects with the UI framework.

The selection of the objects to which the aspects are applied to
is done using Java Annotations [1]. Annotations provide a simple
configuration, yet they are invasive because they force us to modify
the domain classes. The selection of observable/transactional ob-
jects is independent from the rest of the approach, and could be
replaced by a less invasive configuration if desired.

With regard to implementation, one important question is the
selection of an AOP technology. We considered two AOP frame-
works: Javassist [4] and AspectJ [23]. Despite the fact that Aspect]
is a very powerful tool for AOP programming, we decided that its
compiler-based weaver is not suitable for the level of transparency
we aimed to achieve. Using Aspect] would require the program-
mers using our tools to replace its favorite developing environment
for one supporting Aspect]. On the other hand, Javassist uses a
classloader-based instrumentation which is less invasive to client
programmers. Still, Javassist is a very low-level framework which
makes more difficult to implement complex aspects. Therefore, we
decided to implement a light AOP framework on top of it, to sim-
plify the design of our two aspects. This framework is called Aspect
for Pure Objects (APO) and has been released as an independent
tool.

Another point to take into account is bringing this kind of ideas
closer to industrial applications. Particularly, STM is a well-known
technique in the research field, but it has little diffusion in the
software industry. We think that many industrial applications could
take advantage of STM-related techniques.

Whenever the idea of intercepting field accesses in industrial ap-
plications appears, it frequently arises a concern about efficiency.
Our current implementation provides us with very promising re-
sults, showing only a 5% to 6% of performance penalty for big
transactions. Systems with a heavy load of very small transactions
can have a bigger performance penalty. Still, we have already suc-
cesfully applied a previous version of our ideas in a big financial
system, with almost 20000 classes, one milion lines of code, and
thousands of requests per second. Although variable interception is
not penalty-free, the memory-based in-process nature of our frame-
work makes it (by far) more efficient than any database-based trans-
action implementation.

Another industrial concern is the availability of adecquate tools
for testing and debugging aspect-oriented code. To address this
problem, we developed a transaction monitor integrated to Arena,
which helps debugging of applications by allowing the program-
mer to see currently open transactions, which domain objects are
affected by transactions and which properties have been modified
in each context. We think that this kind of tools is crucial to allow
new technologies to be adopted in industrial developments.

7. Related Work

This paper is built upon the idea of building application integrat-
ing the transactional and the observable aspects. Implementations
for both aspects are well known in the industry. However, to our
knowledge the integration of both aspects has not been studied yet.

For the implementation of the Transactional Aspect most of the
work is directed to the use of database transactions and the use of
STM [38]. The use of database transactions mostly follows the def-
inition of transactions present in SQL [10], and all the implemen-
tation is left to the underlying database. There is a great number of
studies about STM implentation. The DSTM2 [21], HybridTM [6]
and the Software Transactional Memory for Dynamic-Sized Data

Structures of Herlihy et. al. [20] present the means to perform the
required transactional aspect.

The implementation for the Observable Aspect has been ex-
plored by Massey [27], Gossman [16] and Smith [39], by showing
different ideas of how to keep the view and the model synchronized.
These works have expanded the MVC idea including bidirectional
binding, as required by our solution for the observable aspect.

8. Conclusions and Future Work

Nowadays, there is a great number of tools for Ul development,
but still there exist some problems which are frequent in industrial
developments and which are not addressed by these tools. When
these problems arise, the programmers have to implement ad-hoc
solutions. These solutions imply facing common problems in a
manual way, writing many lines of repetitive code, which are error
prone.

In this work, we are facing two routine problems with the
UL the synchronization between the view and the model, and the
possibility to model atomic operations. Binding-based variations of
MVC, like MVVM and MVB provide an interesting solution to the
synchronization problem. Combining these ideas with STM greatly
broadens their applicability and allows to solve both problems in a
transparent way, i.e without requiring changes in the domain code.

Our approach has shown to be applicable to a big set of possible
domains. We have tested our approach against multiple domains,
many of which are by far more complex than the examples shown
here. All these examples can be found online at http://xp-dev.
com/svn/ugbar/examples/ui/arena/ and prove our approach
to be a generic solution, with industrial applicability.

The integration of the transactional and observable aspects the
Arena Ul framework, have improved its utility as a tool for the
teaching of UI construction. In the early versions, the students
needed to raise events in a manual way, which forced us to explain
complex concepts and distracted the attention from the topics of the
subject.

As a future work we plan to integrate different strategies to
resolve the conflicts between transactions. The current version does
not detect the possible conflict which arises when two or more
transactions commit changes on the same object. Also, we are
looking forward to adding different isolation levels, like in SQL-
99 [10], and support for collections in the observable aspect.

Another path of development is a web version of the Arena
framework. Our intention is that the same view description will
work for both the web and standalone versions of the framework.
The most difficult issue is to implement the transactional and ob-
servable aspects across the network. Finally, we are working on
improving view definitions by using an XText-based DSL.

Acknowledgments
We want to thank Carlos Lombardi, Débora Fortini, Ana Larra-

mendy and Flavia Fortini for their collaboration discussing these
ideas and reviewing preliminary versions of this work.

References

[1] K. Arnold, J. Gosling, and D. Holmes. The Java programming lan-
guage. Addison Wesley Publishing Company, 2006.

[2] K. Barclay and J. Savage. Groovy Programming; An Introduction for
the Java Programer. Morgan Kaufmann, 2006.

[3] S. Burbeck. Applications programming in smalltalk-80(tm): How to
use model-view-controller (mvc), 1987. URL http://st-www.cs.
uiuc.edu/users/smarch/st-docs/mvc.html.

[4] S. Chiba. Javassist—a reflection-based programming wizard for java.
In Proceedings of OOPSLA’98 Workshop on Reflective Programming,
pages 92115, 1998.

[5] D. B. Computing and D. Benyon. Domain models for user interface
design. In In Benyon, 1996.

[6] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nuss-
baum. Hybrid transactional memory. In I2TH International Confer-
ence on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOSXII), 2006.

[71 R. De Jesus. Objetos puros observables y transaccionales.
http://xp-dev.com/svn/ugbar/research/papers/
TIPRonnyDeJesus12-12-12.pdf, 2012.

[8] B. Dudney, S. Asbury, J. K. Krozak, and K. Wittkopf. J2EE antipat-
terns. Wiley, 2003.

[9] S. Efftinge. Xtend language reference, 4.1, 2006.

[10] A. Eisenberg and J. Melton. Sql: 1999, formerly known as sql3. ACM
Sigmod record, 28(1):131-138, 1999.

[11] C. Elliott. Declarative event-oriented programming. In Proceedings
of the 2nd ACM SIGPLAN international conference on Principles
and practice of declarative programming, PPDP ’00, pages 56-67,
New York, NY, USA, 2000. ACM. ISBN 1-58113-265-4. . URL
http://doi.acm.org/10.1145/351268.351276.

[12] R. Englander. Developing Java Beans. O’reilly, 1997.

[13] M. Fowler and K. Beck. Refactoring: improving the design of existing
code. Addison-Wesley Professional, 1999.

[14] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, and R. Stafford.
Patterns of Enterprise Application Architecture. Addison-Wesley Pro-
fessional, 2002.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns
- Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[16] J. Gossman. Introduction to model/view/viewmodel pattern for build-
ing wpf apps, 2005.

[17] T. Haerder and A. Reuter. Principles of transaction-oriented database
recovery. ACM Computing Surveys, 15:287-317, 1983.

[18] R. Harris and R. Warner. The definitive guide to SWT and JFace.
Apress, 2004.

[19] A. Hejlsberg, S. Wiltamuth, and P. Golde. C# language specification.
Addison-Wesley Longman Publishing Co., Inc., 2003.

[20] M. Herlihy, V. Luchangco, M. Moir, and W. N. S. IIl. Software
transactional memory for dynamic-sized data structures. In 22nd ACM
Symposium on Principles of Distributed Computing, 2003.

[21] M. Herlihy, V. Luchangco, and M. Moir. A flexible framework for
implementing software transactional memory. In ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions, 2006.

[22] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming. In
ECOOP, pages 220-242, 1997. URL http://dblp.uni-trier.
de/db/conf/ecoop/ecoop97.html#KiczalesLMMLLIOY.

[23] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. Getting started with aspectj. Commun. ACM, 44(10):59-65,
2001. URL http://dblp.uni-trier.de/db/journals/cacm/
cacm44.html#KiczalesHHKPGO1.

[24] G. E. Krasner, S. T. Pope, et al. A description of the model-view-
controller user interface paradigm in the smalltalk-80 system. Journal
of object oriented programming, 1(3):26-49, 1988.

[25] Y.-y. LIU and Z.-1. LIU. Pojo and lightweight frameworks overview.
Journal of Wuhan Institute of Shipbuilding Technology, 2:018, 2008.

[26] R. Lammel and S. P. Jones. Scrap your boilerplate: A practical design
pattern for generic programming. In Proc. of the ACM SIGPLAN
Workshop on Types in Language Design and Implementation (TLDI
2003, pages 26-37. ACM Press, 2003.

[27] S. Massey. Design patterns in zk: Java mvvm as model-view-binder,
2012.

http://xp-dev.com/svn/uqbar/examples/ui/arena/
http://xp-dev.com/svn/uqbar/examples/ui/arena/
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://xp-dev.com/svn/uqbar/research/papers/TIPRonnyDeJesus12-12-12.pdf
http://xp-dev.com/svn/uqbar/research/papers/TIPRonnyDeJesus12-12-12.pdf
http://doi.acm.org/10.1145/351268.351276
http://dblp.uni-trier.de/db/conf/ecoop/ecoop97.html#KiczalesLMMLLI97
http://dblp.uni-trier.de/db/conf/ecoop/ecoop97.html#KiczalesLMMLLI97
http://dblp.uni-trier.de/db/journals/cacm/cacm44.html#KiczalesHHKPG01
http://dblp.uni-trier.de/db/journals/cacm/cacm44.html#KiczalesHHKPG01

[28] B. A. Myers and M. B. Rosson. Survey on user interface program-
ming. In Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 195-202. ACM, 1992.

[29] S. Northover and M. Wilson. Swt: the standard widget toolkit, volume
1. Addison-Wesley Professional, 2004.

[30] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Micheloud, N. Mi-
haylov, M. Schinz, E. Stenman, and M. Zenger. The scala language
specification, 2004.

[31] M. Odersky, L. Spoon, and B. Venners. Programming in Scala.
Artima, Mountain View, CA, 2008. ISBN 978-0-981-53160-1.

[32] R. Pawson. Naked objects. Software, IEEE, 19(4):81-83, 2002. ISSN
0740-7459. .

[33] M. Potel. Mvp: Model-view-presenter the taligent programming
model for c++ and java. Taligent Inc, 1996.

[34] H. C. Qiuhui. Study on mvc model2 and struts framework. Computer
Engineering, 6:109, 2002.

[35] T. Reenskaug. Models - views - controllers. Technical report, Tech-
nical Note, Xerox Parc, 1979. URL http://heim.ifi.uio.no/
~trygver/themes/mvc/mvc-index.html.

[36] T. Schummer. Acid transaction. In L. Liu and M. T. Ozsu, edi-
tors, Encyclopedia of Database Systems, pages 21-26. Springer US,
2009. ISBN 978-0-387-39940-9. URL http://dblp.uni-trier.
de/db/reference/db/a.html#X090.

[37] G. Seshadri. Understanding javaserver pages model 2 architecture.
JavaWorld. com, 12:29-99, 1999.

[38] N. Shavit and D. Touitou. Software transactional memory, 1995.

[39] J. Smith. Wpf apps with the model-view-viewmodel design pattern.
MSDN magazine, (2009), 2009.

[40] J. P. Sousa and D. Garlan. Formal modeling of the EJB component
integration framework. Technical Report CMU-CS-00-162, Carnegie
Mellon university, Sept. 2000.

http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
http://dblp.uni-trier.de/db/reference/db/a.html#X09o
http://dblp.uni-trier.de/db/reference/db/a.html#X09o

	Introduction
	Motivation
	Constructing Applications Using the MVC Pattern
	Bindings and Properties
	Firing Events from the Domain Model
	Consequences of Binding
	Transactions

	Proposed Solution
	Observable Aspect
	Transactional Aspect
	Integrating both aspects together and with the UI

	Sample Implementation
	Observable Aspect Implementation
	Transactional Aspect Implementation
	Integration

	Example Application
	Discussion
	Related Work
	Conclusions and Future Work

